Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int Immunopharmacol ; 130: 111790, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447417

RESUMO

OBJECTIVE: Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS: In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS: Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION: Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Alcaloides Indólicos , Podócitos , Piroptose , Quinazolinonas , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino
2.
Ren Fail ; 46(1): 2313182, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345057

RESUMO

Diabetic kidney disease (DKD) is one of the major causes of end-stage renal disease and one of the significant complications of diabetes. This study aims to identify the main differentially expressed genes in DKD from transcriptome sequencing results and analyze their diagnostic value. The present study sequenced db/m mouse and db/db mouse to determine the ALOX12 genetic changes related to DKD. After preliminary validation, ALOX12 levels were significantly elevated in the blood of DKD patients, but not during disease progression. Moreover, urine ALOX12 was increased only in macroalbuminuria patients. Therefore, to visualize the diagnostic efficacy of ALOX12 on the onset and progression of renal injury in DKD, we collected kidney tissue from patients for immunohistochemical staining. ALOX12 was increased in the kidneys of patients with DKD and was more elevated in macroalbuminuria patients. Clinical chemical and pathological data analysis indicated a correlation between ALOX12 protein expression and renal tubule injury. Further immunofluorescence double staining showed that ALOX12 was expressed in both proximal tubules and distal tubules. Finally, the diagnostic value of the identified gene in the progression of DKD was assessed using receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC) value for ALOX12 in the diagnosis of DKD entering the macroalbuminuria stage was 0.736, suggesting that ALOX12 has good diagnostic efficacy. During the development of DKD, the expression levels of ALOX12 in renal tubules were significantly increased and can be used as one of the predictors of the progression to macroalbuminuria in patients with DKD.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Falência Renal Crônica , Humanos , Animais , Camundongos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Rim , Falência Renal Crônica/complicações , Túbulos Renais Proximais/metabolismo , Diabetes Mellitus Tipo 2/complicações , Progressão da Doença , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo
3.
BMC Nephrol ; 24(1): 360, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053016

RESUMO

BACKGROUND: Growing evidence has demonstrated that patients undergoing peritoneal dialysis (PD) are more likely to experience cognitive impairment than patients with non-dialysis end-stage renal disease (ESRD); however, the underlying mechanisms remain unclear. This study aimed to identify the role and predictive significance of gut microbiome alterations in PD-associated cognitive impairment. METHODS: A total of 29 non-dialysis ESRD patients and 28 PD patients were enrolled in this study and divided into subgroups according to the Montreal Cognitive Assessment (MoCA). Faecal samples were analyzed using 16 S rRNA. Mini-Mental State Examination (MMSE) and MoCA scores were used to assess the degree of cognitive impairment in patients. RESULTS: The 16 S rRNA analysis demonstrated differences in gut microbiome abundance and structure between PD and non-dialysis ESRD patients and between PD patients with cognitive impairment (PCI) and PD patients with normal cognition (PNCI). At family and genus levels, Prevotellaceae exhibited the greatest structure difference, while Lactobacillus exhibited the greatest abundance difference between PCI and PNCI. Altered microbiota abundance significantly correlated with cognitive function and serum indicators in PD. In addition, different modules related to fatty acid, lipid, pantothenate, and coenzyme A biosynthesis, and tyrosine and tryptophan metabolism were inferred from 16 S rRNA data between PCI and PNCI. Both groups could be distinguished using models based on the abundance of Lactobacillaceae (Area under curve [AUC] = 0.83), Actinomycetaceae (AUC = 0.798), and Prevotellaceae (AUC = 0.778) families and Lactobacillus (AUC = 0.848) and Actinomyces (AUC = 0.798) genera. CONCLUSION: Gut microbiome evaluation could aid early cognitive impairment diagnosis in patients undergoing PD.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Falência Renal Crônica , Diálise Peritoneal , Humanos , Microbioma Gastrointestinal/genética , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Diálise Peritoneal/efeitos adversos , Cognição
4.
Autophagy ; : 1-26, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050963

RESUMO

Circular RNAs (circRNAs) are special non-coding RNA (ncRNA) molecules that play a significant role in many diseases. However, the biogenesis and regulation of circRNAs in diabetic nephropathy (DN) are largely unknown. Here, we investigated the expression profile of circRNAs in kidney of DN mice through circular RNA sequencing (circRNA-seq). The renal biopsy samples of patients with DN had low circ -0,000,953 expression, which was significantly associated with renal function. Furthermore, loss-of-function and gain-of-function experiments were carried out to prove the role of circ -0,000,953 in DN. Podocyte conditional knockin (cKI) or systemic overexpression of circ -0,000,953 alleviated albuminuria and restored macroautophagy/autophagy in kidney of diabetic mice. However, circ -0,000,953 knockdown exacerbated albuminuria and podocyte injury. Mechanistically, we found circ -0,000,953 directly binds to Mir665-3p-Atg4b to perform its function. Silencing of Mir665-3p or overexpression of Atg4b recovered podocyte autophagy both in vitro and in vivo. To examine the cause of circ -0,000,953 downregulation in DN, bioinformatics prediction found that circ -0,000,953 sequence has a high possibility of containing an m6A methylation site. Additionally, METTL3 was proved to regulate the expression and methylation level of circ -0,000,953 through YTHDF2 (YTH N6-methyladenosine RNA binding protein 2). In conclusion, this study revealed that circ -0,000,953 regulates podocyte autophagy by targeting Mir665-3p-Atg4b in DN. Therefore, circ -0,000,953 is a potential biomarker for prevention and cure of DN.Abbreviation: CCL2/MCP-1: C-C motif chemokine ligand 2; ceRNA: competing endogenous RNA; circRNA: circular RNA; cKI: conditional knockin; cKO: conditional knockout; CRE: creatinine; DM: diabetes mellitus; DN: diabetic nephropathy; ESRD: end-stage renal disease; HG: high glucose; IF: immunofluorescence; MAP1LC3/LC3B: microtubule-associated protein 1 light chain 3 beta; MPC5: mouse podocyte clone 5; MTECs: mouse tubular epithelial cells; MTOR: mechanistic target of rapamycin kinase; NC: normal control; ncRNA: non-coding RNA; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PAS: periodic acid-Schiff; RELA/p65: v-rel reticuloendotheliosis viral oncogene homolog A (avian); SDs: slit diaphragm proteins; Seq: sequencing; STZ: streptozotocin; SV40: SV40-MES13-cells, mouse mesangial cell line; T1D: type 1 diabetes mellitus; T2D: type 2 diabetes mellitus; TEM: transmission electron microscopy; TNF/TNF-α: tumor necrosis factor; VECs: vascular endothelial cells; WT1: WT1 transcription factor; YTHDF2: YTH N6-methyladenosine RNA binding protein 2.

5.
Foods ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002221

RESUMO

The association between red meat consumption and cancer risk remains a controversy. In this study, we systematically collected and analyzed global data (from Our World in Data and Global Cancer Observatory) to investigate this association for the first time. Our results confirmed significant positive associations between red meat consumption (RMC) and overall cancer incidence (0.798, p < 0.001), or colorectal cancer incidence (0.625, p < 0.001). Several previously unreported cancer types linked to RMC were also unveiled. Gross domestic product (GDP) per capita were found to have an impact on this association. However, even after controlling it, RMC remained significantly associated with cancer incidence (0.463, p < 0.001; 0.592, p < 0.001). Meanwhile, after controlling GDP per capita, the correlation coefficients between white meat consumption and overall cancer incidence were found to be much lower and insignificant, at 0.089 (p = 0.288) for poultry consumption and at -0.055 (p = 0.514) for seafood and fish consumption. Notably, an interesting comparison was performed between changes of colorectal cancer incidence and RMC in many countries and regions. A lag of 15-20 years was found, implying causality between RMC and cancer risk. Our findings will contribute to the development of more rational meat consumption concept.

6.
Diabetes Metab Syndr Obes ; 16: 3773-3793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028994

RESUMO

Purpose: Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) worldwide. Elucidation of the molecular mechanisms underlying ferroptosis and immunity in DKD could aid the development of potentially effective therapeutics. This study aimed to perform an integrated analysis of ferroptosis and immune-related differentially expressed mRNAs (DEGs) in DKD. Materials and Methods: Gene expression profiles of samples obtained from patients with DKD and controls were downloaded from the Gene Expression Omnibus (GEO) database. The potential differentially expressed genes (DEGs) were screened using R software, and ferroptosis immune-related differentially expressed genes (FIRDEGs) were extracted from the DEGs. We performed functional enrichment analyses, and constructed protein-protein interaction (PPI) networks, transcription factor (TFs)-gene networks, and gene-drug networks to explore their potential biological functions. Correlation analysis and receiver operating characteristic curves were used for evaluating the FIRDEGs. We used the CIBERSORT algorithm to examine the composition of immune cells and determine the relationship between FIRDEG signatures and immune cells. Finally, the RNA expression of six FIRDEGs was validated in animal kidney samples using RT-PCR. Results: We identified 80 FIRDEGs and performed their functional analyses. We identified six hub genes (Ccl5, Il18, Cybb, Fcgr2b, Myd88, and Ccr2) using PPI networks and predicted potential TF gene networks and gene-drug pairs. Immune cells, including M2 macrophages, resting mast cells, and gamma-delta T cells, were altered in DKD; the FIRDEGs (Fcgr2b, Cybb, Ccr2, and Ccl5) were closely correlated with the infiltration abundance of M2 macrophages and gamma-delta T cells. Finally, the hub genes were verified in mouse kidney samples. Conclusion: We identified six hub FIRDEGs (Ccl5, Il18, Cybb, Fcgr2b, Myd88, and Ccr2) in DKD, and predicted the potential transcription factor gene networks and possible treatment targets for future research.

7.
Biomed Pharmacother ; 167: 115563, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742605

RESUMO

Acute kidney injury (AKI) is a syndrome characterized by rapid loss of renal excretory function. Its underlying mechanisms remain unclear. Pyroptosis, a form of programmed cell death, plays an important role in AKI. It is characterized by cell swelling and membrane rupture, triggering the release of cellular contents and activating robust inflammatory responses. Carnosine, a dipeptide with antioxidant and anti-inflammatory properties, has therapeutic effects in AKI. However, the mechanism by which carnosine treats AKI-associated pyroptosis remains unexplored. In this study, we investigated the protective effect of carnosine on renal tubule cells using in vivo and in vitro models of AKI. We found that carnosine therapy significantly alleviated altered serum biochemical markers and histopathological changes in mice with cisplatin-induced AKI. It also reduced the levels of inflammation and pyroptosis. These results were consistent with those seen in human kidney tubular epithelial cells (HK-2) treated with cisplatin. Through molecular docking and cellular thermal shift assay, we identified caspase-1 as a target of carnosine. By knocking down caspase-1 in HK-2 cells using caspase-1 siRNA, we demonstrated that carnosine did not exhibit a protective role in cisplatin-induced HK-2 cells. This study provides the first evidence that carnosine alleviates damage to kidney tubular epithelial cells by targeting caspase-1 and inhibiting pyroptosis. Therefore, carnosine holds promise as a potential therapeutic agent for AKI, with caspase-1 representing an effective therapeutic target in this pathology.

8.
Ren Fail ; 45(1): 2238829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37488933

RESUMO

BACKGROUND: End-stage renal disease (ESRD) patients have functional and structural brain abnormalities. The cerebellum also showed varying degrees of damage. However, no studies on cerebellar-cerebral functional connectivity (FC) have been conducted in ESRD patients. This study aimed to investigate the changes in cerebellar-cerebral FC in ESRD patients and its relationship with neuropsychological and clinical indexes. METHODS: Resting-state functional magnetic resonance imaging and neuropsychological assessment were performed on 37 ESRD patients and 35 control subjects. Seed-based FC analysis was performed to investigate inter-group differences in cerebellar-cerebral FC. In addition, the relations of altered FC with the neuropsychological function and clinical indicators were analyzed in ERSD patients. RESULTS: ESRD patients exhibited alterations in cerebellar-cerebral FC involving the executive control network, default mode network, and affective-limbic network compared to control subjects (False discovery rate-corrected, p < 0.05). The altered cerebellar-cerebral FC was associated with the Montreal Cognitive Assessment Scale score (p < 0.05), and correlated with serum creatinine and uric acid levels within the ESRD group (p < 0.05). CONCLUSIONS: The study indicates that cerebellar-cerebral FC is involved in the neural substrates of cognitive impairment in ESRD patients. The findings may provide clinically relevant new neuroimaging biomarkers for the neuropathological mechanisms underlying cognitive impairment of ESRD.


Assuntos
Disfunção Cognitiva , Falência Renal Crônica , Humanos , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Falência Renal Crônica/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética/métodos
9.
Int Immunopharmacol ; 120: 110324, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37235960

RESUMO

OBJECTIVE: Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. Since there are limited therapeutic options available for the prevention of DN progression, it is imperative to explore novel differentially expressed genes and therapeutic targets for DN. METHODS: In this study, mice kidney tissue were subjected to transcriptome sequencing and the results were analysed using bioinformatics methods. Interleukin 17 receptor E (IL-17RE) was screened from the sequencing data and its expression was validated in the animal tissues and a cross-sectional clinical study. Fifty-five DN patients were enrolled and further subdivided into two groups based on the urinary albumin-to-creatinine ratio (UACR). Two control groups were used for comparison (minimal change disease group, 12 patients; normal control group, 6 patients). Correlation analysis was conducted to study the relationship between IL-17RE expression and the clinicopathological indices. Logistic regression and receiver operating characteristic (ROC) curve analyses were conducted to evaluate the diagnostic value. RESULTS: IL-17RE expression was significantly higher in db/db mice and the kidney tissues of DN patients than the control group. IL-17RE protein levels in the kidney tissues were strongly correlated with neutrophil gelatinase-associated lipocalin (NGAL) levels, UACR, and certain clinicopathological indices. IL-17RE levels, total cholesterol (TC) levels, and glomerular lesions were independent risk factors for macroalbuminuria. ROC curves showed a good detection value for IL-17RE in macroalbuminuria (area under the curve = 0.861). CONCLUSION: The results of this study provide novel insights into DN pathogenesis. Kidney IL-17RE expression levels were associated with DN disease severity and albuminuria.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Biomarcadores/urina , Relevância Clínica , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/diagnóstico , Receptores de Interleucina-17
10.
J Ethnopharmacol ; 310: 116422, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36972781

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY: Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS: Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS: In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION: In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Cisplatino/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Inflamação/induzido quimicamente , Proteínas de Choque Térmico HSP90/uso terapêutico
11.
Biomacromolecules ; 24(2): 1003-1013, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36651863

RESUMO

Polymer-based nanomaterials have exhibited promising alternative avenues to combat the globe challenge of multidrug-resistant bacterial infection. However, most of the reported polymeric nanomaterials have facially linear amphiphilic structures with positive net charges, which may lead to nonspecific binding, high hemolysis, and uncontrollable self-organization, limiting their practical applications. In this contribution, we report a one-dimensional glyconanorod (GNR) through self-assembly of well-defined ß-cyclodextrin-based glycoconjugates (RMan) featuring hydrophobic carbon-based chains and amide rhodamines with an adenosine triphosphate (ATP)-recognition site and targeted and hydrophilic mannoses and positively net-charged ethylene amine groups. The GNRs show superior targeting sensing and killing for Gram-negative Escherichia coli (E. coli) dominantly through the multivalent recognition between mannoses on the nanorod and the lectin on the surface of E. coli. Moreover, red fluorescence was light on due to the hydrogen bonding between amide rhodamine and ATP. Benefiting from the designs, the GNRs are capable of possessing a higher therapeutic index and of encapsulating other antibiotics. They exhibit an enhanced effect against E. coli strains. Intriguingly, the GNRs displayed a more reduced hemolysis effect and lower cytotoxicity compared to that of ethylene glyco-modified nanorods. These results reveal that the glyconanomaterials not only feature superior and targeted bacterial sensing and antibacterial activity, but also better biocompatibility compared with the widely used PEG-covered nanomaterials. Furthermore, the in vivo studies demonstrate that the targeted and ATP-responsive GNRs complexed with antibiotics showed better treatment using a mouse model of abdominal sepsis following intraperitoneal E. coli infection. The present work describes a targeted and effective sensing and antibacterial platform based on glycoconjugates that have potential applications for the treatment of infections caused by pathogenic microorganisms.


Assuntos
Escherichia coli , beta-Ciclodextrinas , Humanos , Hemólise , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Glicoconjugados/farmacologia , Glicoconjugados/química , beta-Ciclodextrinas/farmacologia
12.
Curr Res Food Sci ; 5: 1906-1915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300164

RESUMO

Microbial inactivation by pulsed electric field (PEF) has been studied widely although with high operational risk, while few studies on the potential of low intensity electric fields for microbial inactivation have been reported. In this study, the feasibility of inactivating microorganisms in milk by low intensity direct current (DC) electric field was investigated. Then a kinetics model was proposed based on the inactivation curves. Finally, the effect of electric field on the microflora and physicochemical properties of milk was analyzed. Results showed that the bacterial reduction >5 log CFU/mL could be achieved at 50-55°C, 0.3 A-0.6 A, and with 5 min starting intensity of 5 V/cm-9 V/cm. The inactivation kinetics consisted of three stages, therein, the middle stage, main part of the inactivation curve, followed 1st-order reaction kinetics, and the effect of temperature on it was consistent with the Arrhenius Law, which implied that the electric field itself can inactivate bacteria without thermal inactivating effect. The microflora analysis showed that naturally occurring bacteria in the milk contained typical potential pathogenic bacteria (e.g., 56.9% of Acinetobacter spp.) and spoilage bacteria (e.g., 27.5% of Pseudomonas spp.), and the electric field can inactivate them. Moreover, the inactivation chemically preserved the milk's fresh-like characteristics (according to indexes of whey protein denaturation rate, furosine content), and physical stability (turbidity, zeta potential, particle size, color and so on). Therefore, a promising approach is provided for microbial inactivation in dairy industry.

13.
Ren Fail ; 44(1): 1558-1567, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36154556

RESUMO

OBJECTIVE: To predict the risk factors for cardiovascular events within 5 years in patients with peritoneal dialysis-associated peritonitis and establish a nomogram for clinical prediction. METHODS: A prediction model was established by conducting an observational study in 150 patients with peritoneal dialysis-associated peritonitis obtained from the Information Database of AnHui Medical University Affiliated Hospital. The nomogram was constructed using the multivariate COX regression model. The C-index and the calibration plot were used to assess the discrimination and calibration of the prediction model. RESULTS: The elderly [HR = 2.453 (1.071-5.619)], history of cardiovascular events [HR = 2.296 (1.220-4.321)], alkaline phosphatase [HR = 1.004 (1.002-1.005)] and culture-positive [HR= 2.173 (1.009-4.682)] were identified as risk predictors of cardiovascular events, while serum albumin [HR = 0.396(0.170-0.924)] was identified as protective predictors of cardiovascular events. Combined with clinical studies, we constructed a nomogram based on the minimum value of the Akaike Information Criterion or Bayesian Information Criterion. The C index of the nomogram is 0.732, revealing great discrimination and appropriate calibration. Through the total score of the nomogram and the result of ROC, we classify patients into high-risk groups (cardiovascular events group) and low-risk groups (no cardiovascular events group). Cardiovascular events were significantly different for patients in the high-risk group compared to the low-risk group (HR = 3.862(2.202-6.772; p < 0.001). CONCLUSIONS: The current novel nomogram can accurately predict cardiovascular events in patients with peritonitis associated with peritoneal dialysis. However, external validation is required before the model can be used in clinic settings.


Assuntos
Diálise Peritoneal , Peritonite , Idoso , Fosfatase Alcalina , Teorema de Bayes , Humanos , Nomogramas , Diálise Peritoneal/efeitos adversos , Peritonite/diagnóstico , Peritonite/epidemiologia , Peritonite/etiologia , Estudos Retrospectivos , Albumina Sérica
14.
Front Pharmacol ; 13: 966645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147345

RESUMO

Necroptosis was elevated in both tubulointerstitial and glomerular renal tissue in patients with diabetic kidney disease (DKD), and was most pronounced on glomerulus in the stage with macroalbuminuria. This study further explored whether paeoniflorin (PF) could affect podocyte necroptosis to protect kidney injure in vivo and in vitro. Our study firstly verified that there are obvious necroptosis-related changes in the glomeruli of DKD through bioinformatics analysis combined with clinicopathological data. STZ-induced mouse diabetes model and high-glucose induced podocyte injury model were used to evaluate the renoprotection, podocyte injury protection and necroptosis regulation of PF in DKD. Subsequently, the target protein-TNFR1 that PF acted on podocytes was found by computer target prediction, and then molecular docking and Surface plasmon resonance (SPR) experiments were performed to verify that PF had the ability to directly bind to TNFR1 protein. Finally, knockdown of TNFR1 on podocytes in vitro verified that PF mainly regulated the programmed necrosis of podocytes induced by high glucose through TNFR1. In conclusion, PF can directly bind and promote the degradation of TNFR1 in podocytes and then regulate the RIPK1/RIPK3 signaling pathway to affect necroptosis, thus preventing podocyte injury in DKD. Thus, TNFR1 may be used as a new potential target to treat DKD.

15.
FASEB J ; 36(9): e22501, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971776

RESUMO

Macrophage infiltration plays an important role in the progression of diabetic nephropathy (DN). Previously, we demonstrated that highglucose-stimulated macrophage-derived exosomes (HG-exo) induces proliferation and extracellular matrix accumulation in glomerular mesangial cells, but its effect on tubular cells is unclear. This study aimed to explore the role of HG-exo on renal tubular injury in DN. The results show that HG-exo could induce dysfunction, autophagy inhibition, and inflammation in mouse tubular epithelial cell (mTEC) and C57 mouse kidney. Moreover, miR-7002-5p was differentially expressed in HG-exo based on miRNAs sequencing and bioinformatics analysis. A dual-luciferase reporter assay confirmed that Atg9b was the direct target gene of miR-7002-5p. Further experimentation showed that miR-7002-5p inhibition in vivo and vitro reserves HG-exo effects. These results demonstrated that HG-exo carries excessive miR-7002-5p and inhibits autophagy through targeting Atg9b; this process then induces renal tubular dysfunction and inflammation. In conclusion, our study clarifies the important role of macrophage-derived exosomes in DN and is expected to provide new insight on DN prevention and treatment.


Assuntos
Autofagia , Nefropatias Diabéticas , Exossomos , Proteínas de Membrana , MicroRNAs , Animais , Proteínas Relacionadas à Autofagia/genética , Nefropatias Diabéticas/genética , Células Epiteliais/citologia , Exossomos/genética , Inflamação/genética , Túbulos Renais/citologia , Macrófagos , Proteínas de Membrana/genética , Camundongos , MicroRNAs/genética
16.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34253875

RESUMO

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Glomérulos Renais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Flavanonas/administração & dosagem , Injeções Intraperitoneais , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade
17.
Int Immunopharmacol ; 101(Pt A): 108278, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700131

RESUMO

The function of the complement and macrophage crosstalk during the formation of crescents in lupus nephritis has not yet been reported. This study therefore aimed to explore the association of crescents, complements, and M2 macrophages with clinical features in lupus nephritis. We assessed a Chinese cohort comprising 301 patients with lupus nephritis. Renal biopsy specimens were collected from 64 patients with proliferative lupus nephritis (class III/III + V or IV/IV + V). The renal deposition of cluster of differentiation (CD) 68, inducible nitric oxide synthase, CD163, and C3a receptor (C3aR) was evaluated by immunostaining. The associations among crescents, complements, and M2 macrophages were also analyzed. Next, the underlying mechanism was investigated in vitro using C3a-treated macrophages. We found that M2-phenotype macrophages (CD163+) were the dominant subpopulation in human lupus nephritis. Additionally, a significant association was observed among the CD163+ macrophages, crescents, and complement activation. C3aR co-localized with CD163 and correlated with crescents and could induce polarization of macrophages to an M2 phenotype. Overall, these results suggest that complement-mediated M2/M1 macrophage polarization may contribute to the formation of crescents in lupus nephritis.


Assuntos
Glomérulos Renais/patologia , Nefrite Lúpica/imunologia , Macrófagos/imunologia , Adulto , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biópsia , Feminino , Humanos , Glomérulos Renais/imunologia , Nefrite Lúpica/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Células RAW 264.7 , Receptores de Superfície Celular/metabolismo , Receptores de Complemento/metabolismo , Estudos Retrospectivos
18.
Am J Transl Res ; 13(6): 6611-6619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306404

RESUMO

OBJECTIVE: To explore the effects of solution-focused nursing on leukemia chemotherapy patients' moods, cancer-related fatigue, coping styles, self-efficacy, and quality of life. METHODS: A total of 103 patients who underwent leukemia chemotherapy in our hospital were analyzed retrospectively and were divided into two groups based on the intervention method. Group A underwent routine nursing intervention, and group B underwent solution-focused nursing. The Hamilton Anxiety Rating Scale (HAMA) scores, the Montgomery-Asberg Depression Rating Scale (MADRS) scores, the Trait Coping Style Questionnaire (TCSQ) scores, the cancer-related fatigue self-rating scores, the General Self-Efficacy Scale (GSES) scores, and the Spitzer Quality of Life Index scores were compared between the two groups. RESULTS: Compared with group A, group B had lower HAMA scores, lower MADRS scores, lower cognitive, behavioral, perception, and emotional scores, and higher self-efficacy scores (P<0.05). Group B had higher activity scores, and better psychological statuses, support from family and friends, health perception, and outlook on life than group A after the intervention (P<0.05). CONCLUSION: Solution-focused nursing can alleviate leukemia chemotherapy patients' negative emotions and cancer-related fatigue, improve their coping styles, and increase their self-efficacy and quality of life.

19.
Drug Des Devel Ther ; 15: 3131-3150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295152

RESUMO

INTRODUCTION: Kidney tubular epithelial injury is one of the key factors in the progression of diabetic nephropathy (DN). Wogonin is a kind of flavonoid, which has many pharmacological effects, such as anti-inflammation, anti-oxidation and anti-fibrosis. However, the effect of wogonin in renal tubular epithelial cells during DN is still unknown. MATERIALS AND METHODS: STZ-induced diabetic mice were given doses of wogonin (10, 20, and 40 mg/kg) by intragastric administration for 16 weeks. The metabolic indexes from blood and urine and pathological damage of renal tubules in mice were evaluated. Human tubular epithelial cells (HK-2) were cultured in high glucose (HG) condition containing wogonin (2µM, 4µM, 8µM) for 24 h. Tubular epithelial cell inflammation and autophagic dysfunction both in vivo and in vitro were assessed by Western blot, qRT-PCR, IHC, and IF analyses. RESULTS: The treatment of wogonin attenuated urinary albumin and histopathological damage in tubulointerstitium of diabetic mice. We also found that wogonin down-regulated the expression of pro-inflammatory cytokines and autophagic dysfunction in vivo and in vitro. Molecular docking and Cellular Thermal Shift Assay (CETSA) results revealed that mechanistically phosphoinositide 3-kinase (PI3K) was the target of wogonin. We then found that inhibiting PI3K eliminated the protective effect of wogonin. Wogonin regulated autophagy and inflammation via targeting PI3K, the important connection point of PI3K/Akt/NF-κB signaling pathway. CONCLUSION: Our study is the first to demonstrate the novel role of wogonin in mitigating tubulointerstitial fibrosis and renal tubular cell injury via regulating PI3K/Akt/NF-κB signaling pathway-mediated autophagy and inflammation. Wogonin might be a latent remedial drug against tubular epithelial injury in DN by targeting PI3K.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Flavanonas/farmacologia , Inflamação/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/fisiopatologia , Relação Dose-Resposta a Droga , Fibrose/tratamento farmacológico , Flavanonas/administração & dosagem , Humanos , Inflamação/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
20.
Amino Acids ; 53(5): 687-700, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33811534

RESUMO

Diabetic nephropathy (DN) is one of the major complications of diabetes and contributes significantly towards end-stage renal disease. Previous studies have identified the gene encoding carnosinase (CN-1) as a predisposing factor for DN. Despite this fact, the relationship of the level of serum CN-1 and the progression of DN remains uninvestigated. Thus, the proposed study focused on clarifying the relationship among serum CN-1, indicators of renal function and tissue injury, and the progression of DN. A total of 14 patients with minimal changes disease (MCD) and 37 patients with DN were enrolled in the study. Additionally, 20 healthy volunteers were recruited as control. Further, DN patients were classified according to urinary albumin excretion rate into two groups: DN with microalbuminuria (n = 11) and DN with macroalbuminuria (n = 26). Clinical indicators including urinary protein components, serum carnosine concentration, serum CN-1 concentration and activity, and renal biopsy tissue injury indexes were included for analyzation. The serum CN-1 concentration and activity were observed to be the highest, but the serum carnosine concentration was the lowest in DN macroalbuminuria group. Moreover, within DN group, the concentration of serum CN-1 was positively correlated with uric acid (UA, r = 0.376, p = 0.026) and serum creatinine (SCr, r = 0.399, p = 0.018) and negatively correlated with serum albumin (Alb, r = - 0.348, p = 0.041) and estimated glomerular filtration rate (eGRF, r = - 0.432, p = 0.010). Furthermore, the concentration of serum CN-1 was discovered to be positively correlated with indicators including 24-h urinary protein-creatinine ratio (24 h-U-PRO/CRE, r = 0.528, p = 0.001), urinary albumin-to-creatinine ratio (Alb/CRE, r = 0.671, p = 0.000), urinary transferrin (TRF, r = 0.658, p = 0.000), retinol-binding protein (RBP, r = 0.523, p = 0.001), N-acetyl-glycosaminidase (NAG, r = 0.381, p = 0.024), immunoglobulin G (IgG, r = 0.522, p = 0.001), cystatin C (Cys-C, r = 0.539, p = 0.001), beta-2-microglobulin (ß2-MG, r = 0.437, p = 0.009), and alpha-1-macroglobulin (α1-MG, r = 0.480, p = 0.004). Besides, in DN with macroalbuminuria group, serum CN-1 also showed a positive correlation with indicators of fibrosis, oxidative stress, and renal tubular injury. Taken together, our data suggested that the level of CN-1 was increased as clinical DN progressed. Thus, the level of serum CN-1 might be an important character during the occurrence and progression of DN. Our study will contribute significantly to future studies focused on dissecting the underlying mechanism of DN.


Assuntos
Nefropatias Diabéticas/enzimologia , Dipeptidases/sangue , Adulto , Biomarcadores , Estudos de Casos e Controles , Creatinina/sangue , Cistatina C/sangue , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/lesões , Rim/fisiopatologia , Falência Renal Crônica/sangue , Falência Renal Crônica/enzimologia , Falência Renal Crônica/patologia , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...